
Three-Way DEDICOM for Relational Learning

Maximilian Nickel
University of Munich

nickel@cip.ifi.lmu.de

Volker Tresp
Siemens AG

volker.tresp@siemens.com

1 Introduction

Relational learning is finding an increasing number of applications in such diverse areas as social
network modeling, the semantic web, bioinformatics and artificial intelligence. At the same time,
tensors and their decompositions are widely used in fields like psycho- or chemometrics and more
recently have also been applied to data mining and machine learning problems, e.g. for modeling
temporal effects in social networks such as the WWW. The goal of this paper is to explore some ap-
plications of tensor decompositions to relational learning. The main motivation is that domains with
multiple relations of any order can be expressed straightforwardly as a higher-order tensor. Here we
have a slightly different focus: we demonstrate the usefulness of a special kind of tensor decomposi-
tion, i.e. 3-way DEDICOM [5], for modeling domains with multiple binary relations in the tasks of
instance matching and collective classification. We use the semantic web’s RDF formalism where
relations are modeled as RDF triples of the form (subject, predicate, object) and where
a predicate either models the relationship between two entities or between an entity and an attribute
value. Relational data are modelled as a 3-way tensorX , where two modes are identically formed by
the concatenated entities of the domain1 and the multiple predicates define the third mode. A tensor
entry Xikj 6= 0 denotes the fact that there exists a triple (i-th entity, j-th predicate,
k-th entity). An attribute value will be modeled differently using kernels as discussed in the
following section.

2 Methods and theoretical aspects

Relational learning is concerned with domains where the entities are connected by multiple rela-
tions. In such a domain it can be of great benefit when the learning algorithm is able to propagate
information across multiple relations. For instance, consider the task of predicting the party mem-
bership of a president resp. vice president of the United States of America. Without any additional
information, this can be done quite accurately when the party of the president’s vice president (or
vice versa) is known, since both persons have mostly been members of the same party. Figure 1(a)
shows a visualization of the set of (vice) presidents, their party-membership and their relations. To
benefit from relational modelling, a learning algorithm should be able to propagate the party infor-
mation across the (vice-)presidency relations when the party membership of a particular person in
the population is unknown.

As described earlier, two modes consist of the domain’s entities and the predicates form the third. In
order for a tensor decomposition to automatically detect the discussed correlations across relations,
it is important that subjects and objects of different relations are recognized to be identical when
they refer to the same entity, as only then chains like (partyX partyOf personB) (personB
presidentOf personA) can be detected. Furthermore, the relations are not necessarily symmet-
ric and consequently the predicate-slices aren’t symmetric either. Motivated by these considerations
we chose the 3-way DEDICOM decomposition, as it has been developed for this situation and meets
all requirements.

1Please note that we don’t assume homogeneous domains, thus the entities of one mode can be instances of
multiple classes like persons, items, places, etc.

1



Using DEDICOM, canonical relational learning tasks can be approached as following. Let Xk be
the tensor slice that describes the k-th predicate and m be the number of predicates. The 3-way
DEDICOM decomposition of X is given by Xk ≈ ADkRDkA

T , for k = 1, . . . ,m . The entity-
concept matrix A contains the latent components, R models the interactions, and the diagonal Dk

models the participation of latent components in the k-th slice. Entity resolution can be performed by
clustering entities on the entity-concept matrix A, while link prediction can be done by evaluating the
entries of the appropriate reconstructed predicate-slice ADkRDkA

T . Collective Classification can
be regarded as a subtask of link prediction, as the class of an entity can by modelled by introducing
a class relation. Thus it can also be solved by reconstructing the appropriate predicate-slice.

In the discussion so far we assumed that the objects of a predicate are entities. Now we consider
the case that the object is an attribute value. Attributes of an entity are usually continuous (e.g. age)
or discrete (e.g. textual description) variables. Conceptionally, one could use some form of data
processing techniques like binning or n-grams and treat the modified attribute values in the same
way as entities are treated in DEDICOM. However, this would result in a significantly increased
dimensionality and sparsity of the tensor, since e.g. semantical considerations would require that
different predicates use different bins and because attributes like proper names can have very unique
values. Instead, we propose to use kernel matrices for attributes. The rationale in doing so is that for
attributes one isn’t interested in information propagation, but in computing the similarity of entities
by the means of these attributes. Expressing this similarity is exactly the purpose of a kernel matrix.
Since a kernel matrix is a entities × entities matrix it can also be used as a predicate-slice in the
tensor. We propose to create an entity-attribute matrix E where the rows correspond to the entities
that are present in the entity-modes and the columns correspond to one or more attributes of these
entities. Then, the predicate slice K for these attributes can be computed by an appropriate kernel,
in the simplest case by the linear kernel K = ETE. To ensure that none of the attribute-kernels
dominates the decomposition, it might be necessary to normalize or weight these kernel matrices
appropriately.

3 Experiments

In this section we present two applications of DEDICOM on relational datasets. DEDICOM has
been implemented as the ASALSAN [1] algorithm on top of the Tensor Toolbox [2].

3.1 Information Propagation

The first experiment demonstrates the benefits of information propagation as discussed in Section 2.
We retrieved the names of all presidents and vice presidents of the United States from DBpedia, in
combination with their party membership and the presidentOf/vicePresidentOf information. From
this data we constructed a 93 × 93 × 3 tensor, where the entity modes correspond to the joint set
of persons and parties and the third mode to the three predicates. The goal of the experiment is to
predict the party membership for each person and thus the problem can be regarded as a collective
classification task. Please note that the dataset contains no further information that could help at
predicting the correct party. Consequently, a machine learning algorithm should only be successful
on this dataset when it is able to propagate information across the (vice-)president relation. To
evaluate the algorithms on this data we’ve conducted leave-one-out cross validation by iterating
over all persons and deleting the party-membership information of the person of interest. In the
case of DEDICOM we performed a rank-2 decomposition, ranked all parties by their entries in the
reconstructed party-membership-slice ADkRDkA

T and recorded the bpref-10 score.

Figure 1(b) shows the results of DEDICOM compared to the PARAFAC decomposition on the same
tensor. Moreover, we have included SUNS [6], a relational learning approach for large scale data.
However, SUNS isn’t able to propagate information across different relations. Aggregated SUNS
(SUNS+AG), which mimics information propagation, improves the SUNS model significantly.2 The
results of DEDICOM outperform both PARAFAC and SUNS and thus show clearly the usefulness
of our approach for domains where information propagation is required.

2In this context aggregation means that the party membership information of the related person has been
added as a new attribute to each statistical unit

2



(a)

Random

PARAFAC

DEDICOM
SUNS

SUNS+AG
0.0

0.2

0.4

0.6

0.8

1.0

bp
re

f-
10

0.397

0.680

0.857

0.587

0.841

Prediction of party membership

(b)

Figure 1: Data visualization and experiments for the (vice-) presidents of the United States and their party
associations. The size of the ring segments in Figure 1(a) indicate how many presidents and vice presidents
originate from the particular party. An arc indicates a presidentOf relation and the size of an arc indicates
how often this relation occurs between the connected segments.

3.2 Instance Matching

Instance matching is a term that is most frequently used in the semantic web community and refers
to the task of identifying the entity descriptions (also called instances) from heterogeneous data
sources that refer to identical real-world entities. Therefore, it can be regarded as an entity resolution
problem. However, classical entity resolution is usually concerned with identifying entities that have
different value representations, e.g. “M. Gandhi” or “Mahatma Gandhi”, while it is assumed that the
data adheres to one logical and structural representation, e.g. that the entities of type Person have an
attribute birth place. This isn’t the case for instance matching. Consider two data sources A and B.
Source B might specify the birth place as a relation instead of an attribute or source A might link
brothers and sisters by a siblings relation while source B specifies only a relation to the parents for
these entities. Therefore, instance matching is an interesting problem for relational learning and is
at the same time an important practical problem, for example at linking data in the semantic web.

To evaluate the applicability of DEDICOM to instance matching we used the IIMB 2009 benchmark
suite.3 The benchmark has been created by collecting data like movies and actors from the Internet
Movie Database (IMDB). In particular, the data consists of 5 entity classes (Movie, Actor, PlaceOf-
Birth, Cast, AKA), 4 relations (BornIn, InterpretedBy, HasCast, AlsoKnownAs), 13 attributes (e.g.
Name, Genre) and 302 entities. This reference data has been subjected to various transformations
like introducing typographical errors or changing the structure of the model, what ultimately lead
to 70 different data modifications in total. In the following we will refer to these modifications as
test cases. The objective of the benchmark is to match the entities of each test case to the entities
of the reference data. For a thorough discussion of the benchmark please refer to [4]. We expect
that DEDICOM can produce good results in this problem domain, as the entity-concept matrix A
is computed by minimizing the global reconstruction error across all modes and thus should also
detect correlations across multiple predicates. Moreover, as the decomposition aggregates the pred-
icates simultaneously to the entity-concept mapping, we anticipate that the entity-concept space is
a meaningful representation for entity resolution even when the structural or logical representations
of similar predicates are diverse.

In particular, we’ve applied the following procedure for each test case: First we created one joint
tensor X for the test case and the reference data, such that the entities and predicates of both datasets
form the entity modes or predicate slices, and setXikj = 1 for each existing triple (i-th entity,
j-th relation, k-th entity). Furthermore, for selected predicates like rdfs:label or
imdb:name we created kernel matrices as predicate-slices.4 Therefore, we first built a TF-IDF

3available at http://www.instancematching.org/iimb2009
4In the present case, we’ve manually specified which predicate should be treated by string kernels. However,

this could easily by automated by looking at the datatype of the object value

3



Precision Recall F-Measure

Value Transformations (01-18) DEDICOM 0.968 0.888 0.926
Typographical errors, Standard modifications H-Match 0.928 0.89 0.908

Structural Transformations (19-37) DEDICOM 0.987 0.878 0.929
Values deletion & separation, Depth modification H-Match 0.885 0.862 0.872

Mixed Transformations (38-53) DEDICOM 0.982 0.887 0.933
Value and structural transformations H-Match 0.922 0.915 0.918

Logical Transformations (54-70) DEDICOM 0.977 0.777 0.866
Different (sub)classes & instantiations, Implicit val. H-Match - - -

Table 1: Instance matching benchmark results of DEDICOM and HMatch. The best results for each measure
are printed bold. The results of HMatch for the test cases 54-70 are missing, as the reference implementation
wasn’t able to parse the test files.

matrix Ti from the bigrams of the object values of the selected predicate. Afterwards we computed
the predicate-slice for this predicate by the linear kernel Ki = TT

i Ti. Varying with the particular
test-case, this resulted in a tensor-size of approximately 740× 740× 20. Following the construction
of X , we’ve applied DEDICOM such that Xk ≈ ADkRDkA

T . In order to match the entities of
both data representations, we computed the nearest neighbour ri of the reference data for each entity
tj of the test case in the concept-space A. Since equality is a symmetric relation we required that tj
is also the nearest neighbour of ri. If this should be the case, we conclude that ri and tj refer to the
same entity.

As a reference algorithm we used H-Match [3], a specialized instance and ontology matching algo-
rithm that is able to use linguistic, contextual and structural features as well as reasoning to match
instances and also gave good results at the 2009 OAEI Instance Matching Track. Table 1 shows
that the DEDICOM approach for relational instance matching is very competitive. This is especially
notable as we didn’t incorporate any problem specific engineering, like WordNet similarity kernels.

4 Conclusion

In this short overview we have shown how the 3-way DEDICOM tensor decomposition can be ap-
plied to relational learning problems and how kernels can be utilized to handle attributes. In partic-
ular we have shown the benefits of our approach for information propagation and instance matching
in multi-relational domains and achieved very promising predictive results using a custom dataset
for collective classification and a benchmark suite for instance matching. To obtain highly scal-
able solutions we are currently investigating distributed versions of DEDICOM as well as exploiting
constraints like typed relations.

References
[1] Brett W. Bader, Richard A. Harshman, and Tamara G. Kolda. Temporal analysis of semantic graphs using

ASALSAN. In Seventh IEEE International Conference on Data Mining (ICDM 2007), pages 33–42,
Omaha, NE, USA, 2007.

[2] Brett W. Bader and Tamara G. Kolda. MATLAB tensor toolbox version 2.4, March 2010.
[3] S. Castano, A. Ferrara, and S. Montanelli. H-MATCH: an algorithm for dynamically matching ontologies

in peer-based systems. In Proc. of the 1st VLDB Int. Workshop on Semantic Web and Databases (SWDB
2003), Berlin, Germany, September 2003.

[4] Alfio Ferrara, Davide Lorusso, Stefano Montanelli, and Gaia Varese. Towards a benchmark for instance
matching. In Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, and Heiner Stuckenschmidt, editors,
Ontology Matching (OM 2008), volume 431 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[5] R. A Harshman. Models for analysis of asymmetrical relationships among n objects or stimuli. In First
Joint Meeting of the Psychometric Society and the Society for Mathematical Psychology, McMaster Uni-
versity, Hamilton, Ontario, August, 1978.

[6] Yi Huang, Volker Tresp, Markus Bundschus, and Achim Rettinger. Multivariate structured prediction for
learning on semantic web. 2010.

4


